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Abs t rac t .  This paper aims at describing and analyzing concurrent sys- 
tems whose behavior is dependent on explicit time delays. The formal 
description technique Lotos [Loto 89] is extended with time intervals 
in the following way: actions in Lotos must occur at a time t within 
a given interval [train, tmax] relative to the previous action executed by 
the process. The syntax and semantics of Time Interval Lotos is given. 
The model is defined as a labelled transition systems with clocks associ- 
ated with states and timing conditions associated with transitions. The 
labelled transition system derived corresponds to a timed graph model 
[Alur 90]. The logic TCTL (Computation Tree Logic with time) which 
allows quantitative operators in the formulas can be used to specify asser- 
tions. Model-checking is used to determine the truth of a TCTL-formula 
with respect to a labelled transition system derived from the Time Inter- 
val Lotos specification. We illustrate the approach by a simple example. 
We also present an alternative approach for verifying timing properties. 
A labelled transition system with time intervals is derived. This graph 
does not represent the precise evolution of the system in time. Each tran- 
sition is labelled with an action and a time interval showing the range of 
possible time occurrences for the action. 

1 Introduct ion 

With the proliferation of computer-communication networks and the increas- 
ing importance of distributed processing, researchers have worked intensively 
on the modelling of distributed systems. Formal description techniques such as 
Lotos [Loto 89, nolo 87], Estelle [nudk 87] and SDL [SDL 87] have been devel- 
oped to describe OSI (Open Systems Interconnection) communication protocols 
and services as well as other kind of distributed systems. Those specification 
formalisms and the verification methods, however, make abstraction from the 
quantitative aspect. But for certain type of systems such as real-time systems, 
the specification methods and verification techniques should incorporate time 
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values since the correctness of the system depends not only on the logical result 
of the computation but also on the time at which the results are produced. 

This paper addresses the issue of correctness of a system which is specified 
with a formal descriptiorl technique and where actual time values are included 
in the specification. The idea is to check whether the specified system satisfies a 
number of desirable properties that include time. Properties can be formulated 
in a temporal logic formalism augmented with quantitative time. If the system 
has a finite number of states, then we can use a model-checking approach which 
is an algorithmic method for verifying automatically those properties. It consists 
of checking that a given state graph derived from the formal description of the 
system satisfies a given temporal formula. 

The formal description technique we consider in this paper is a variant of 
Lotos defined in Section 2, called Time Interval Lotos, which adds time intervals 
of the form [train, t,~a,] to Lotos actions. An action a, once enabled, cannot occur 
before time tmi, and must occur before tma= time has elapsed since its enabling, 
unless it is disabled by the occurrence of another action. The semantics is de- 
fined in terms of a labelled transition system which includes clocks associated to 
states and timing enabling conditions associated to transitions. Temporal formu- 
las are expressed in the logic TCTL [Alur 90], which is an extension of CTL with 
continuous time. The time assertions written in TCTL are checked against the 
labelled transition system with clocks and timing conditions generated from the 
Timed Interval Lotos specification. We also present in Section 5 an alternative 
approach for verifying timing properties. A labelled transition system with time 
intervals is derived. This graph shows all the possible paths of timed actions but 
does not represent the precise evolution of the system in time. Each transition 
is labelled with an action and a time interval showing the range of possible time 
occurrences for the action. The contribution of the paper is hence, on the first 
hand, the definition of an extension of Lotos with Time Intervals and the deriva- 
tion of a labelled transition system on which model-checking can be performed, 
and, on the second hand, the presentation of an alternative approach to verify 
timing properties. 

Re l a t ed  work: Process algebras such as CCS [Miln 80], CSP [Hoar 85] 
and ACP [Berg 84] have been extended with timing characteristics. Nicollin and 
Sifakis [Nico 91] presented an overview of existing results about timed process 
algebras. Quemada et al. [Quem .89] proposed a time extension of Lotos where an 
occurrence time is associated with each action: this time indicates the global time 
when the action must occur. Bolognesi et al. [Bolo 90b] define a time extension 
of Lotos which offers operators for specifying the urgency of a specified action. 
Their model is similar to the Time Petri Net of Merlin and Farber [Merl 76]. In 
[Rico 91], the model considered is an extension of Lotos with actions that have 
an associated specific time of occurrence and weights associated in the case of 
a probabilistic choice. The goal was to predict the performance of distributed 
systems. The model proposed in this paper considers an extension of Lotos with 
time intervals associated with actions: time intervals are better suited for the 
verification of timing assertions. Emerson. et al. [Emer 89] defined an extension of 
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CTL (RTCTL) with discrete time which can be used to specify and verify hard 
deadlines. Hanssou [Hans 91] also extended CTL with time and probability. His 
temporal logic formulas are interpreted over a labelled transition system derived 
from a modification of CCS which includes discrete time and probabilities. Alur, 
Courcoubetis, and Dill [Alur 90] also proposed an extension to CTL, but in 
their logic (TCTL) formulas are interpreted over models with continuous time. 
They introduce the concept of a timed graph to model a finite-state real-time 
system: the system is equipped with a finite set of clocks which record the time 
elapsed since they were reset. They developed a model checking algorithm for 
determining the truth of a TCTL formula with respect to a timed graph. Lewis 
[Lewi 90] presented a variation of CTL with continuous time that is interpreted 
over a finite-state model in which the time delays between events are constrainted 
to fall between upper and lower integer time bounds. 

The paper is organized as follows. In the next section, we describe a semantics 
for Time Interval Lotos. In Section 3, the branching time logic with time TCTL 
is presented as well as the model-checking method for checking TCTL-formulas 
in respect to a given Time Interval Lotos specification. In Section 4, a small 
example is given. In Section 5, a method for enumerating all possible timed 
paths is described. Finally, we discuss the modelling approach in the conclusion. 

2 L o t o s  w i t h  T i m e  I n t e r v a l s  

Time Interval Lotos is a variant of Lotos (Language Of Temporal Ordering 
Specification) [Loto 89, Bolo 87], which adds time intervals to Lotos actions. 
In this section, we will present Lotos and define our timing interval extension. 

2.1 Lotos 

Lotos [Loto 89, Bolo 87] is an algebraic specification language based on CCS 
[Miln 80]. Lotos is defined in terms of processes and uses rendez-vous inter- 
actions. The rendez-vous may involve two or more processes and occurs at an 
interaction point called a gate: it happens when all Lotos processes coupled to 
the gate are ready for that interaction.Interaction and process parameters are de- 
scribed by ACT ONE [Ehri 85] abstract datatype definitions. We are interested 
in the basic Lotos language which does not include the interaction and process 
parameters. The operations of basic Lotos are the following, where B, B1, B~ are 
behavior expressions, a is an action and g l , . . . ,  g~ are gate identifiers: 

Inaction stop Process instantiation pig1,. �9 g,~] 
Action prefix a; B Parallel composition B11[gl , . . . ,  g,~]IB2 
Choice B1 ~ B2 Pure Interleaving B~IIIB2 
Termination exit Relabeling p[gl/g'~ . . . . .  gn/g']  
Enabling B1 >> B2 Hiding hide g l , - . . ,  g,~ in B 
Disabling B1 [> B~ 



291 

2.2 T ime  Interval  Lotos: P r e s e n t a t i o n  o f  th e  M o d e l  

This section describes LOTOS which has been enhanced with t ime intervals of 
the form [t,~i~, trnax] where t,~i~ and tma~ are natural  numbers.  Those intervals 
are associated with each action a and are relative to the momen t  at which the 
previous action within the same process was executed. When the previous action 
is executed, we say tha t  action a is "locally" enabled or that  action a is enabled 
due to the execution of a previous "local" action of the process. An implicit 
global clock exists in the transition sys tem.  Assuming tha t  the previous local 
action has been executed at a global t ime gt, action a cannot fire before t ime 
gt + trnin and must  fire before or at t ime gt + trnax unless it is disabled by the 
occurrence of another action. The t ime domain is represented as real numbers.  

T ime Interval Lotos assumes that  the t ime intervals associated with the ac- 
tions have a local meaning. This is the same in Quemada ' s  model [Quem 89]: 
every action is assigned a single t ime s tamp which indicates the exact t ime at 
which the action shall happen relative to the previous local actionl A t ime choice 
construct also exists for representing the occurrence of an event at an unspecified 
instant  of t ime out of a given set. The difference between Time Interval Lotos 
and Quemada ' s  mSdel resides in the definition of the labelled transition system 
(LTS): the LTS derived in Quemada ' s  model contains transitions with their t ime 
of occurrence whereas the LTS derived for Time Interval Lotos has clocks and 
t iming conditions and can therefore deal with t ime intervals. The other main  
difference between the two models is that  in Quemada ' s  model, some transitions 
may not be derived due to the t iming relation between the different components  
whereas the LST derived for our model is the same LTS derived by the usual 
Lotos inference rules with additional t iming constraints. 

In the model of Bolognesi et al. [Bolo 90b], the t ime intervals associated 
with actions have a global meaning, which makes the model semantically very 
different from ours. An action is enabled when all the processes part icipat ing in 
the action are ready to interact. The model of Bolognesi expresses the urgency 
of actions, i.e. the fact that  something happens as soon as all the processes are 
ready for it. Bolognesi's model has more expressive power since it can simulate 
a Turing machine [Bolo 90b]. It can easily model the si tuation where two pro- 
cesses must  synchronize after each one independently executes an action with 
unbounded delay (i.e. with interval [0, c~]). This si tuation is not modeled ade- 
quately by models in which actions have a local meaning. However, in the case 
where two processes must  synchronize after only one of them executes an ac- 
tion with unbounded delay, then the two types of models are as expressive. This 
second case occurs more frequently in real examples hence the l imitat ion men- 
tionned in the case of symmetr ic  unbounded delay is not often encountered. One 
disavantage of the approach of Bolognesi is that  there are more properties which 
are undecidable whereas our model can be more easily analyzed. 

2.3 T ime  Interval  Lotos  Semant ics  

The syntax of T ime Interval Lotos is the same as s tandard Lotos except for the 
action prefix: instead of writing a; B for an action followed by behavior B, we 
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write a[tmi,~,tma~]; B which means that  action a must  occur at a t ime t in the 
interval [tmi,, tmaz]. 

The model of T ime Interval Lotos is a labelled transition system as defined by 
the Lotos operat ional  semantics. Each system has a finite set of clocks Cks.  We 
associate with every behavior expression a subset C of Cks.  C is a set of clock 
identifiers corresponding to the clocks which are reset to 0. We associate with 
each interaction offer a clock which is a fictitious component  that  keeps track of 
the possible t ime at which the event can occur. For example,  in the expression 
a; b; stoPl[b]lb; c; stop, we associate a clock with a, with c, with offer b in the left 
side of the parallel expression and with offer b in the right side of the parallel 
expression. There are as many  clock identifiers as there are interaction offers in 
the system. We use the following notation for the clock identifier: Cai is the clock 
identifier of offer a where i is a natural  number. In the case of an action that  is 
not involved in a rendez-vous, the clock identifier is simply noted Ca. Transitions 
are labelled with actions and with an enabling condition which is built using the 
boolean connectives over the formulas of the form X[tmin, trna~:], where x E Cks, 
and train, tma~: E N.  An action a with enabling condition r ( a ) =  z[tmin, tmax] is 
possible if the value of clock identifier x is in the interval [t,nin, tma~]. 

D e f i n i t i o n  ( M o d e l  o f  T i m e  I n t e r v a l  L o t o s  b e h a v i o r :  T i m e d  g r a p h )  
For a given behavior B0, the model of Time Interval Lotos behavior is a labelled 
transition system < Cks, S, A, TR ,  so >, where : 

- Cks  is a finite set of clocks. 
- S = { B e }  is the set of all possible states, represented by behaviors, to which 

we associate a set of clocks that  are reset to 0 when the state is entered. 
- A = {a r(a)la E L(B)  U {i}} is the set of all possible actions. L(B)  is the 

alphabet  of actions and i is the internal action, r (a )  is a function that  associates 
with each edge an enabling condition built using the boolean connectives over 
the formulas of the form z[tmi,,t,~a,], where x E Cks, and t,~i~,t,~ao: E N.  

- T R  C S x S is a set of relations - a t ( a )  ---+ defining the pairs of states associated 
with action a. We write B1 - a 7"(a) ~ B2 iff < B1, B2 >E TR.  

- so = B0 Co is the initial s tate where Co is the set of clocks corresponding to 
actions initially enabled. 

The t imed graph obtained resembles the t imed graph of Alur et al. [Alur 90] 
except tha t  it does not include the proposition t ruth value assignments to states. 
The semantic  rules of Lotos operators [Loto 89] have to be redefined in order 
to associate t iming conditions with transitions and a set of clocks with behavior 
expressions. The rules for some of the operators are the following: 

A c t i o n  w i t h  T i m e  I n t e r v a l :  The t iming condition associated with interaction 
offer ai for gate a states tha t  the value of clock cai must  be in [tm~n, t,~a~]. 

(a[tmi,,tmax]; B)C -- a Cai[tmin,tmax] --+ Be '  

where C' = {cbj I 3B'  such that Bc,  - b r(b) ~ Bb,, } 
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Choice  BIOB~_= 

S,c , -~ ,  ~(o,)-s ' , r  
C1. (S,OS~)c-,~t ~(~,)--B,c ~} 

0 2 .  s y m m e t r i c  o f  rule  C1 

P a r a l l e l i s m  B11[G] IS2: 

P1.  (Stl[GllS2)c-a (n(a) ~,a r~(a))--(S~l[G]IB~)c,~c, 2 
T I B,cl-a (a)--Blc, 

P2. (S,l[GllS2)c-a r(a)--(B~ I{G]IB2)c~ a ~ G 

P3.  s y m m e t r i c  o f  rule P 2  

a E G  

Proces s  i n s t a n t i a t i o n  B = P[gl, g~., . . . , g,] : 

B p [ g l / h l  . . . .  , g , , / h . ] c  - a r (a)  - -  B~, 
BC - aT(a) --* B~, 

where Bp represents the body of the definition of process p, ( g l , . . . , g , )  is a 
list of formal gates, ( h l , . . . ,  h , )  is a list of actual gates, [ g l / h l , . . . ,  g n / h , ]  is 
the relabeling postfix operator, (gate gi becomes gate hi f o r  i = 1, . . . ,  n). The 
semantic rules of the other operators are defined in [Rico 9'2.]. 

2.4 E x a m p l e  

The following example illustrates a timeout situation. This example is semanti- 
cally the same as the one described in [Bolo 90a]. 
P[a, b, c] = Q[a, b]l[b]lR[b, c] 
Q[a, b] = a[0, ~] ;  hi0, 0]; Q[~, b] 
R[b, c] = b[O, oo]; Rib, c]Oc[lO, I0]; stop 

Let the clock identifier for actions a, c, b (in process Q) and b (in process 
R) be respectively ca, cr cbl, c~2. C is the subset of the clocks reset to 0. The 
labelled transition system for this example is the following: 

~ c={%, %2 ' % } 

~/_~a % [o,~] 

c={%1} q - (~=7% [o,~] 
C C [ I 0 , i 0 %  

Figure 1. Labelled transition system of P[a.b,c] 
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3 M o d e l  C h e c k i n g  u s i n g  T i m e  C o m p u t a t i o n  T r e e  L o g i c  

In this section, we will describe the temporal logic TCTL [Alur 90] and explain 
how to perform model checking for Time Interval Lotos specifications. 

311 T ime  C o m p u t a t i o n  Tree Logic (TCTL)  

Computation Tree Logic (CTL) is a branching time logic that was introduced 
by Emerson and Clarke [Clar 83] as a specification language for finite-state 
systems. Alur, Courcoubetis and Dill [Alur 90] proposed an extension of CTL 
with continuous time.The resulting logic is called TCTL and is interpreted over 
continuous computation trees, i.e. trees in which paths are maps from the set of 
nonnegative reals to system states. The syntax of TCTL is the following: 
Def ini t ion [TCTL Syntax] 
Let P be the set of atomic propositions. The TCTL formulas are inductively 
defined as follows: r := p [ false ] r --* r [ 3 r162 r [ V ~)lU~c r 
where p C P, c E N, r r and r are TCTL-formulas, and ,-~ stands for one of 
the binary relation <, _<, =, _> or >. 
Intuitively 3r U<cr (Vr162162 means that for some (all) path(s), there exists 
an initial prefix of time length less than c such that r holds at the last state of 
the prefix and r holds at all the intermediate states. 

The semantics is defined with respect to a structure M = (S, #, f), where S 
is a set of states, # : S ~ 2 p gives an assignment of truth values to propositions 
in each state, and f is a map giving for each s E S a set of dense paths starting 
at that state, f satisfies: Vs E S, Vp E f (s) ,  Vt E R, ptf[p(t)] C_ f (s )  where Pt is the 
prefix of path p upto time t and p(t) is a state corresponding to time t. 
Def in i t ion [TCTL Semantics].  
Let p E P, c E N and ,~ stands for one of the binary relation <, <, =, > or >. 
For a structure M = (S, #, f),  a state s E S and a formula r the satisfaction 
relation (M, s) ~ r is defined inductively as follows: 

(M, s) ~ false 
(M, s) ~ p iff p E/~(s) 
( M , s ) ~ ( r 1 6 2 1 6 2 1 6 2  
(M, s) ~ 3r162 iff for some p E f(s) ,  for some t .~ c, p(t) ~ r and for all 
O<t' < t , p ( t ' ) ~ r  
(M,  s) for all p C for some t ~ c, ; ( t )  and for all 

O~_t' < t , p ( t ' ) ~ r  

A TCTL-formula f is called satisfiable iff there is a structure M and a state s 
such that (M, s) ~ r 

3 . 2  Model -Check ing  

Model-checking is a method for verifying concurrent systems in which a given 
state graph of the system behavior is compared with a given temporal logic 
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formula. It is one of the most successful techniques for automatically checking 
that a given temporal formula, written in propositional temporal logic, is satisfied 
by a state-transition graph that represents the actual behavior of the system. 
One of the advantages of the method is its efficiency. Model-checking is linear 
in the product of the size of the structure and the size of the formula when the 
logic is the branching-time temporal logic CTL. With time values, the complexity 
of the model checking algorithm using TCTL is exponential in the number of 
clocks and the length of the timing constraints, but linear in the size of the 
state-transition graph and the length of the formula [Alur 90]. 

In the model-checking approach for Time Interval Lotos, the idea is to con- 
struct the timed graph from the Lotos specification and to add the proposition 
truth value assignments to the states of this timed graph. The generation of this 
timed graph is explained in Section 2. We add to this timed graph a labeling 
function # : S ---* 2 P which assigns to each state the set of atomic propositions 
true in that state. The resulting structure is a timed graph in the sense of [Alur 
90] and is the structure used for model-checking. Properties to be verified are 
written in TCTL. User-defined TCTL-formulas are checked against this struc- 
ture using the algorithm of Alur et al. [Alur 90]. 

4 Example: Stop and Wait Protocol 

4.1 Specif ication of  the Protoco l  

In this section, we demonstrate the modeling approach described above by pre- 
senting the stop-and-wait protocol, which is a simplified version of the alternat- 
ing bit protocol. This protocol uses two types of messages : information (info) 
frames and acknowledgement (ack) frames. The transmitter sends an info frame 
and waits for an ack frame from the receiver. The medium is unreliable in both 
directions. The specification of the protocol is the following: 

specification stop-and-wait [get, give] : noexit 
behaviour 
hide sendinfo, recinfo, sendack, recack in 

((transmitter[get,sendinfo,recack] I~l receiver[give,sendack,recinfo]) 
I[sendinfo,recinfo,sendack,recack]l 
medium[sendinfo,recinfo,sendack recack] ) 

where process transmitter[get,sendinfo recack]: noexit := 
get [0, 1]; sendinfo [0, 1]; sending[get,sendinfo,recack] 

where process sending[get,sendinfo,recack] : noexit := 
recack [0, 2];transmitter[get,sendinfo,recack] 
~i[10, 10];sendinfo[0, 1];sending[get,sendinfo,recack] (*timeout*) 
endproc (*sending*) 

endproc (*transmitter*) 
process receiver[give,sendack,recinfo]: noexit := 

recinfo[0, oc] ;(give[0, 1];(sendack[0, 1]~i[0, 1]); receiver[give,sendack,recinfo] 
~i[0, 1] receiver[give,sendack,recinfo]) 
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endproc (*receiver*) 
process medium[sendinfo,recinfo,sendack,recack] : noexit := 

sendinfo[0, cc]; (recinfo [0, 2] ;medium[sendinfo,recinfo,sendack,recack]) 
0(i[0, 2];medium[sendinfo,recinfo,sendack,recack]) ) 

0 sendack[0, oo]; (recack [0, 2];medium[sendinfo,recinfo,sendack,recack]) 
0(i[0, 2];medium[sendinfo,recinfo,sendack,recack]) ) 

endproc (*medium*) 
endspec (*stop-and-wait*) 

The global behavior is determined by applying the inference rules described 
in Section 2. The following graph shows the labelled transition system with clocks 
and timing conditions, where i(s), i(m) and i(r) denote the internal action asso- 
ciated with process sending, medium and receiver, respectively. For readability, 
we did not indicate the timing condition associated with the internal actions: 
they are ci(s)[lO, 10], ei(r)[O, 1], ci(m)[O, 2]. 

C = { c g e t ~  
get cget[O,l] 

$endinfo csendiafol[O,1] and csendi_rffo2[O,--] 

i ~  i(m) ~ r -1 and crecinfo2[O, 21 

3 ~ c i ( s  ),ci(m),crecinf0 2 } 

i~{cgive,ci(r)} 

'(m~2 ~ ~ (~ ~ C={csendackl,ci(r)} 

",L "~'1 i(r)/ ~ ;)~ sendack 
~2 B~ y ~ " ~ndackl[0,1] and r 'endack2[ 0,~ ] 

Figure 2. Timed graph of the stop-and-wait protocol 

4.2 Model-Checking 

One property that may be of interest is that for each sendinfo action there is 
always a subsequent recack. For an open system where we do not make any 
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assumptions about the environment, this property does not hold since there 
is a possibility that the environment will never attempt to communicate a get 
or a give. On the other hand, in a closed system, we can verify the following 
hard deadline that specifies that a recack will appear within 10 time units. The 
closed system is obtained by the following specification, where the user is always 
prepared to engage in the actions get or give: 
hide I[get,give]l in stop-and-wait [get, give] I[get,give]l user[get, give] 
where process user[get,give]: noexit := 
get[O, 1]; user[get,give] D give[O, 1]; user[get give] 
endproc (*user*) 

The property to be verified is the following (the silent action i is parametrized 
by the action to which the hide operator was applied): 
for all paths, [i(sendinfo) ~ true U<lo i(reeaek)] U<o~ false 

The labelling starts from the subformulas i(sendinfo), i(recack),true and 
false. It then proceeds to the modal formulas U<lo. The formula r is not verified 
for the labelled transition system of the stop and wait protocol since the process 
sending may execute the internal action several times and the recack may appear 
after 10 time units. 

5 P a t h  E n u m e r a t i o n  f o r  T i m e  I n t e r v a l  L o t o s  

We assume that we have a Time Interval Lotos specification where a time interval 
is associated with each action. An alternative approach to the verification of 
timing properties is to derive a graph that captures all the allowed sequences of 
actions as well as certain constraints on the time interval in which the allowed 
actions are to take place. This approach enumerates the possible paths composed 
of timed actions. Hence we can determine from the path enumeration graph if 
the system contains livelocks or deadlocks. This approach is similar to the one 
proposed in [Bert 91]. 

The timed graph described in Section 2 shows paths which are not possible 
due to the timing constraints associated with the transitions. For example, in 
the timed graph of the stop-and-wait protocol shown in figure 3, the paths where 
action i(s) is followed by action i(m) are not valid since the timing conditions 
associated with those actions cannot be satisfied. On the opposite, the paths 
shown in the path enumeration graph are all possible. 

We will present informally how the path enumeration graph can be con- 
structed. This graph is composed of nodes and transitions. Each node corre- 
sponds to a state augmented with time constraints < B, T > where T is the 
system of inequalities showing the time constraints of the offers enabled. The 
time constraints T are the following (we will explain below why the constraints 
have this specific form): 

tminai <_ tai <_ tmaxai for all interaction offer ai enabled 
tai - -  t b j  <<_ da i ,b j  for all ai and b j, a # b 
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Each transit ion is labelled with an action and a t ime interval: the t ime interval 
indicates the range of possible t ime when the action may  occur. 

It  is assumed tha t  the times are relative to the moment  at which a previous 
local action has been executed. When first enabled, the t imes of the offers must  
satisfy the following inequalities: iminai < tai < imazai  where iminai and 
imax~i correspond to the upper  and lower bounds of the interval associated 
with offer ai and lai is the t ime of occurrence of a. 

Let us consider a transit ion corresponding to the execution of action f .  When 
f is executed at t ime t l ,  the inequalities of the remaining interaction offers en- 
abled must  be updated  to eliminate the variable t] from the system of  inequal- 
ities. The modified system of inequalities is associated to the next state. Those 
inequalities become: train" i < tlai < tmax"  i for all a ~ f where the new bounds 
for the action a are tmin~ai and tmaz'ai and where tai -- t !  + t'~i. 

When the variable t l  is eliminated from the system T, this may  introduce a 
relationship between two other variables tai a n d  tbj that  remain enabled. This 
relationship can be expressed by the following constraint: t lai-  tlbj <_ dlai,bj where 
dial,hi is the maximal  difference between the two variables t~ai and t'bj. This ad- 
ditionnal constraint may  narrow the possible occurrence t imes of future actions, 
resulting in a t ime interval for future actions with tigher bounds. 

In the initial state or for any new offer a enabled, we can take the following 
default values for tmin~i  , tmaxai ,  dai,bj : 
tminai  = iminai and tmazai  = imaz~i  for all interaction offer ai 
d~i,bj = tmazbj  - tmin~i  for all pair of offers ai, bj with a # b. 

The pa th  enumerat ion graph is derived from a T ime Interval Lotos behav- 
ior expression. Given a state < B , T  >, we determine all the possible tran- 
sitions tha t  can be derived. We label the transitions of the graph with one 
of the possible offer f enabled. Action f can occur in the following interval: 
[ m a x i ( t m i n A ) , m i n ~ j ( t m a z ~ j )  ]. The new state reached is < B ' , T ' >  where B '  
is a new behavior expression derived and T '  is the new set of constraints having 
the same form as T. 
The new t ime region T '  is computed from T in the following way: 
S t e p  1. El iminate from the system the t ime variables that  corresponds to the 
offers disabled by the occurrence of action f .  Each elimination of a variable t~j 
t ransforms the system of inequalities in the following way: 
tminlai = m a z (  tminai  , tmine j  - dej,ai ) 
tmax~ai = m in ( tmaxa i ,  tmaxej  + dai,ej ) 
d I ai,bk min(dai,bk, dai,ej + dej,bk) 
S t e p  2. Express all remaining times t~i of all actions a where f # a as the sum 
of t !  and a new variable t~i, and eliminate from T all old variables, including t ! .  
tmin~ai = maz(O, -dyj,ai,  tminai  -- t m a z  yj ) 
tmax'~i = min(dai,yj ,  tmazai  - t m i n l j  ) 
dtai,bj = min(dai,bj, tmaxai  -- tminbj ) 
S t e p  3. Add the t ime interval constraints corresponding to the new actions en- 
abled. The  t ime intervals are the one associated with the interaction offer in the 
specification. 
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t rain"  i = iminai  and t m a z ' i  = imaz~i  for all new offers ai enabled 
dtai,bj = imaxbj  - im ina i  for all offers bj enabled (b ~: a) 

Consider the following example. The corresponding graph is shown in figure 3. 
B -- B~ I[~,3, a,,]IB~l[a3, a4]IB3 
B, = ,,~[I, 6]; (,,511, 8] III a~[2, 3] III "411,4]); B~ 
B~_ = a411, 4]; B2 
133 = a312, 3];/33 

1.6] 

a3[0,2~~a4[0,2] 

a4[0,2: ~ ~[o,2~ 
1 C1 

[1.3] 

a: a2[oa 

a4[0,: a3[0,21X J.a2[0,5] 

Figure 3. Graph enumarating all possible paths of B 

The set of time constraints associated with each state is the following: 

State 
Ci 

T State 
1 < t~l < 6 C2 

(54 0 <_ t .2 <_ 4 
0 < ta4 <_ 2 

ta4 - ta~. <_ 3 
ta~. - ta4 <_ 5 

Cr 0 <_ t~3 <_ 2 
Clo 0 < ta3 _< 2 

Cs 

C8 

T 
1 _< t~= _< 6 
2 < t a 3 < 3  
1 < ~:a4 ~ 4 

o_<t~_<5 
0 < t~3 _< 2 

t~2 - t ~ 3  < 4 
ta3 --ta2 < 2 
0 _< t~4 _< 2 
0 _< t~ _< 5 

State 
C3 

C9 

T 
0 < t~3 < 2 
0 _< t~4 < 3 

t=4 - t ~ 3  < 2 
t=3 - t , 4  _< 2 
0 < t~4 < 2 

o < to2 <,4 

In the graph enumerating all paths, each state has only a finite number of 
successor states, at most one for each action enabled. In deriving the states of 
this graph, a state < B ' , T '  > is equal to a previously defined state < B , T  >, 
if the behavior reached is the same (B = B' )  and if the time constraints are the 
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same (T = T~). At each new state, if the behavior reached equals a behavior 
already generated (B = B~), the system of inequalities associated with B ~ is 
solved and compared with the solution of a system of inequalities associated 
with B. This can be done in polynomial time because the system of inequalities 
have only at most two variables per inequality [Aspv 79]. When the two systems 
yield the same solution, the new state is the same as the one already derived. 
The derivation of the graph stops when processes come into a deadlock state or 
if the states have all been generated. Hence the same behavior can be associated 
with two different states if the time regions are different for the two states. 

6 S u m m a r y  a n d  C o n c l u s i o n s  

Lotos and other formalisms abstract away from time, retaining only the sequenc- 
ing of events in a system. But for a large class of systems including real-time 
systems, we need to be able to specify time values and to verify that the system 
meets certain hard real-time constraints. This paper presents an extension of Lo- 
tos with Time Intervals. Its semantics is defined in terms of a labelled transition 
system augmented with clocks and timing conditions associated with transi- 
tions. In the model of Time Interval Lotos presented, time is continuous and not 
discrete and represented in the form of an interval associated with actions. 

Model-checking can be applied to the timed graph obtained from the Time 
Interval Lotos specification. The formalism we use to express timing assertions 
about the system is an extension of the branching time logic CTL called TCTL. 
TCTL is a temporal logic formalism defined by Alur et al. [Alur 90] which 
handles continuous time. A model-checking approach developed by Alur et al. 
[Alur 90] is used for verifying that properties expressed in TCTL are verified by 
the model of Time Interval Lotos. 

Another approach to the verification of timing properties is the derivation of 
all the possible sequences of actions and associated time. The graph generated 
shows sequences of actions and indicates in what interval the actions can occur. It 
does not give the evolution for particuliar time values but shows all the possible 
occurrence times for each action in the path. With this graph, one can determine 
if the system contains livelock and deadlocks since all the possible execution 
times are generated. 
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